
 

1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                      

MACHINE LEARNING FOR HIGH RESOLUTION 

HIGH VOLTAGE GRID MAPPING 

Pilot project for Nigeria, Zambia and Pakistan 

June 2018 

 



 

2 
 

 

This report was prepared by Development Seed under contract to The World Bank.  

It is a deliverable under the WBG Energy & Extractives Open Data and Analytics Project (ID: 
P161394), which intends to provide World Bank Group (WBG) clients, staff and other stakeholders 
with facilitated access to energy sector related data and advanced analytics toward informing 
strategic and project level decisions. 

The methodology of this report is based on the previously piloted Machine Learning for 
, which was further refined based on additional tests and pilots with different ML 

approaches and datasets.  

This project was funded and supported by the Energy Sector Management Assistance Program 
(ESMAP), a multi-donor trust fund administered by The World Bank. 

This document is an interim output from the above-mentioned project. Users are strongly 
advised to exercise caution when utilizing the information and data contained, as this has not been 
subject to full peer review.  

 

 

Copyright © 2018 International Bank for Reconstruction and Development / THE WORLD BANK  

Washington DC 20433. 

Telephone: +1-202-473-1000  

Internet: www.worldbank.org 

 

This work is a product of the consultants listed, and not of World Bank staff. The findings, 

interpretations, and conclusions expressed in this work do not necessarily reflect the views of The 

World Bank, its Board of Executive Directors, or the governments they represent. 

The World Bank does not guarantee the accuracy of the data included in this work and accepts no 

responsibility for any consequence of their use. The boundaries, colors, denominations, and other 

information shown on any map in this work do not imply any judgment on the part of The World 

Bank concerning the legal status of any territory or the endorsement or acceptance of such 

boundaries. 

The material in this work is subject to copyright. Because the World Bank encourages 

dissemination of its knowledge, this work may be reproduced, in whole or in part, for non-

commercial purposes as long as full attribution to this work is given. Any queries on rights and 

licenses, including subsidiary rights, should be addressed to World Bank Publications, The World 

Bank Group, 1818 H Street NW, Washington, DC 20433, USA; fax: +1-202-522-2625; e-mail: 

pubrights@worldbank.org. Furthermore, the ESMAP Program Manager would appreciate receiving 

a copy of the publication that uses this publication for its source sent in care of the address above, 

or to esmap@worldbank.org. 

http://devseed.com/
http://esmap.org/
http://www.worldbank.org/
mailto:esmap@worldbank.org


 

3 
 

INTRODUCTION 
 

The objective of this project was to support the SDG7 goals on energy access and renewable 

energy, and broader energy sector development, by providing governments, commercial 

developers, and researchers with access to high quality data on the location and characteristics 

of high voltage electricity transmission lines in WBG client countries to facilitate geospatial 

planning and project development. 

The deliverable explores further the possibility to automatically detecting transmission lines from 

satellite imagery using neural network machine algorithms. It follows results from a pilot activity 

undertaken from March-September 2017 under the project that demonstrated the possibility to 

identify HV grid power poles from SAR imagery, providing a new opportunity for fast and cost-

effective power grid mapping at scale (results of the pilot activity are available 

at http://devseed.com/ml-grid-detection/). 

The project implemented machine learning based grid mapping for three countries to further 

refine and validate the methodology preliminary developed with the pilot, in view of developing 

a solid proof of concept supporting a potential scale-up in subsequent phases of the project. 

Data, algorithms and learnings resulting from this deliverable will be made available publicly to 

help inform and foster further efforts in the space. 

As a natural continuation of the previous pilot project, the same company – Development Seed 

was contracted for implementation of this project. Development Seed is a leading creative 

strategy and engineering team. It develops online communications strategies for global 

organizations and builds open source solutions that solve complex communications challenges. 

They specialize in creating intuitive interfaces that effectively communicate large, complex data. 

 

EXECUTIVE SUMMARY 
 

The goal of the assignment was to determine and develop an open-source, cost effective and 

accurate method for identifying and mapping the high voltage transmission network and apply it 

on three pilot countries: Nigeria, Zambia and Pakistan. 

Problem 
Access to electricity is still limited in many developing nations. A variety of factors underlie this 
problem, but one core issue is that a map of the high-voltage (HV) infrastructure rarely exists. 
The schematics that are available are often outdated, incomplete, or split between a number of 
different agencies. Without a centralized map, governments or other organizations do not have 
the knowledge to make informed decisions on where to invest in maintenance or expansion of 
the electric grid. This lack of information also complicates decisions about alternative energy 
sources — without knowing where the conventional grid exists, it’s hard to intelligently deploy 

http://devseed.com/ml-grid-detection/
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alternatives like solar- or wind-power (Szabó et al., 2011). Beyond just the map itself, 
governments and organizations need a fast and cost-effective mapping pipeline. The HV grid is 
always in flux, so the ability to create an accurate snapshot at regular intervals is an important 
goal. Toward this goal, we partnered with the World Bank to develop a pipeline capable of 
efficiently mapping HV infrastructure at a country-wide scale. 

Figure 2. Examples of HV towers in satellite images. 

Toward solving this problem, a pipeline was built to efficiently map the high-voltage (HV) grid at 
a country-wide scale. This pipeline relied on both machine learning (ML) and Data Team – a group 
of eight professional mappers. The ML component processed satellite imagery across an entire 
target country and returned geospatial locations likely to contain HV towers -- the tall metal 
structures that support HV lines running for hundreds or thousands of kilometers. The Data Team 
then overlaid this information on top of satellite imagery and used it as a guide to help quicken 
their mapping of HV towers, lines, and substations. With this overlay, they could focus their 
attention on high priority areas and avoid the tedious task of reviewing entire countries worth of 
imagery by hand. 

Using this pipeline, nearly all of the HV network in Pakistan, Nigeria, and Zambia were mapped 
and it was found that using the ML model increased mapping speed 33-fold per km2, compared 
to a purely manual approach. Examples of satellite images and the final workflow are below. 
The model, code, and mapping output are openly available, and the possibilities for further 
improvements of this pipeline are outlined in the Discussion section. 

                

http://iopscience.iop.org/article/10.1088/1748-9326/6/3/034002
http://devseed.com/ml-grid-docs/results/mapping-output-and-speed
https://github.com/developmentseed/ml-hv-grid-pub
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Figure 1. Tracing with ML-derived prediction overlay. Each square represents a tile that the ML 
model believed to contain a HV tower. The Data Team then mapped from tower to tower using 
this overlay as a guide. Video reflects actual speed.  
 
 
 

Strategy 

To generate a country-wide high voltage map, it was hypothesized that a two-part processing 
pipeline would work best. A machine learning model comprised the first component, which 
predicted the probability of a HV tower within individual zoom 18 satellite image tiles (or about 
0.5 m/pixel). Its strength is processing speed – when running on a modern graphic processing 
unit (GPU), the model is capable of processing hundreds of thousands of images per hour. It was 
not expected to yield an extremely high accuracy, however, this first component acted as a first 
pass at detecting HV towers. The second component in the pipeline was made up of professional 
mappers. Humans are naturally more accurate at this task and can easily recognize HV towers 
against a wide range of backdrops from desert to dense forests. Therefore, the mappers could 
accurately trace from tower to tower and note questionable features that need additional 
validation. The goal was to combine these two components into an accurate but fast pipeline:  

1. The ML component acted to rapidly produce a prioritization map (Figures 3 and 4), which 
then guided our Data Team of human mappers to focus on high-value areas likely to 
contain a tower.  

2. The Data Team could then trace every component of the HV grid whether the ML model 
detected it or not. This ensured that their efforts were intelligently allocated instead of 
using a brute force approach of manually reviewing every meter of ground. It also meant 
that every edit added to OpenStreetMap was made by a human -- an important validation 
step to avoid incorrect changes to this community-driven map. 

Figure 3. Find HV towers in satellite imagery with ML. The goal of the ML component was to detect as 

many HV towers as possible; here three of four. With this overlay, our Data Team could start tracing from 

these high-priority locations and fan outward to map the entire HV grid. 

 

https://wiki.openstreetmap.org/wiki/Zoom_levels
https://wiki.openstreetmap.org/wiki/Zoom_levels
https://www.openstreetmap.org/
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Figure 4. Example of detected HV towers in a high-level view. When viewing the ML detections on top 

of the map, the strings positive predictions (indicating HV lines) begin to stand out. 

Some existing maps of the target countries did exist prior to this project, but in general they 
lacked quality. Most of the data available tracked a few lines across long distances but missed 
components of the grid or did not provide accurate locations. There were also some regional 
maps available, but these were not centralized in a single location. The three target countries 
under this project included Pakistan (1,009,303 km2, 50 million zoom 18 tiles), Nigeria (927,886 
km2, 40 million zoom 18 tiles), and Zambia (777,773 km2, 34 million zoom 18 tiles). The aim was 
to map HV infrastructure in these countries, but also to develop a reusable framework to reduce 
the time and cost associated with any future mapping efforts. 
 

METHODOLOGY 

 
The processing pipeline 

Generating country-wide maps involved several key steps outlined below and discussed in detail: 

1. Download imagery for Pakistan, Zambia, and Nigeria after obtaining country boundaries 
and computing tile indices. 

2. Train a machine learning model to compute the probability that a HV tower was present. 
Then, apply the model at a country-wide scale. 

3. Compile the highest probability results into a GeoJSON map overlay that indicated the 
most likely HV tower locations. 

4. Trace HV infrastructure (specifically towers, lines, and substations) using the ML-derived 
overlay to focus on high-value areas. 

1. Download imagery 
To find all satellite imagery for each country, the country boundaries were first downloaded from 
an online database of Global Administrative Areas. As Pakistan has an ongoing border dispute, it 
was confirmed that those borders matched those matched the internal records of the World 
Bank. Then the indices of every satellite imagery tile that overlapped each country's borders at a 
specific zoom (or spatial resolution) were calculated. Tile indices simply consist of 3 numbers: X, 
Y, and Zoom coordinates reflecting the spatial location and pixel resolution of that tile. All 
relevant tiles for each country were obtained using a depth-first search algorithm: this algorithm 

http://devseed.com/ml-grid-docs/methodology/1-download-imagery/www.gadm.org
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kept a queue of tile indices stored in a last-in-first-out stack. At each iteration, the top tile was 
removed, it’s spatial boundaries were computed, and the algorithm checked for spatial overlap 
between the tile boundaries and the country’s boundaries. If this overlap was nonzero, the 
algorithm computed the four sub-tiles of the original tile (i.e., zooming in a single increment) and 
added these tiles to the stack. If, when the algorithm removed a tile index in the queue, it found 
that this tile both (1) overlapped with the country boundary and (2) was at the specified zoom 
(here, 18), then it appended this tile index to a text file and deleted it from the queue. Once the 
queue was empty, the algorithm terminated leaving a text file with all tile indices at a specific 
zoom that cover the country boundary. The advantage here was that it could process millions of 
tiles without ever storing more than 50 tile indices in the computer’s operational memory (RAM). 
This algorithm was published as open source code upon completion of this project. 
 
2. Machine learning 
The code and model are available on Github.  
With the imagery downloaded, the next step was to autonomously investigate these images for 
HV towers. A probability score was generated on the interval [0, 1] that a HV tower was present 
in each raster image using a convolutional neural network (CNN). The CNN took raster images as 
input, and produced a single probability per image as output. Specifically, the XCeption neural 
network (Chollet, 2016) was used as it has shown excellent scores on the ImageNet benchmark 
test set and has relatively few parameters relative to comparable CNNs (e.g., VGG and Inception). 
The latter fact implies faster training and prediction run-times simply because there are fewer 
point computations per image. 

The XCeption model was trained using three small datasets -- one from each of the three target 
countries (Figures 5-7). The Data Team manually validated all tiles in these datasets and 
incorporated any required changes into OSM. This involved checking every meter of ground so 
that we were confident our training dataset did not miss any towers or include false positives, 
which would hurt our ML model performance during the inference stage (i.e., predicting on a 
country-wide image set). For the training data, only the Digital Globe Vivid layer was used as this 
was the imagery that was accessible for full country prediction. Then the actual data was 
constructed using Label-Maker – an open tool built previously by Development Seed to rapidly 
construct ML-ready datasets from OSM and an imagery source. The training procedure leveraged 
transfer learning: the XCeption model was initialized in Keras using weights 
from ImageNet training. Afterwards, only the top layer was re-trained for 2-5 epochs so that it 
would output the probability of two classes (HV tower present or absent), and finally opened up 
training to all layers to fine tune the entire model.  

https://github.com/developmentseed/ml-hv-grid-pub
https://arxiv.org/abs/1610.02357
https://arxiv.org/abs/1610.02357
https://github.com/developmentseed/label-maker
https://keras.io/
http://www.image-net.org/
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Figure 5. Training region for Pakistan. Green features represent HV infrastructure included in 
the training data. 

             

Figure 6. Training region for Nigeria. Green features represent HV infrastructure included in the 
training data. There are some broken lines as HV infrastructure was only included if it was visible 
on the Digital Globe Vivid layer. 
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Figure 7. Training region for Zambia. Green features represent HV infrastructure included in the 
training data. There are some broken lines as HV infrastructure was only included if it was visible 
on the Digital Globe Vivid layer. 

The binary cross-entropy loss function was used in training and generally trained over 15-30 
epochs of the total training dataset. Also, the Keras’s utility functions were used, including early 
stopping and automatically reduced learning rate when validation loss hit a plateau. The dataset 
was augmented by using Keras’s image preprocessing functions to randomly flip, rotate, and 
scale original images during the training procedure. Results were visualized with Tensorboard to 
monitor model progress. For hyperparameters, the Hyperopt library was used to intelligently 
iterate over different hyperparameter combinations. The full list of hyperparameters is available 
in config.py, but generally this included options like the optimizer, learning rate, initialization 
strategy, etc. An optimal model was selected based on the highest accuracy score achieved on 
the held-out testing data across all Hyperopt iterations. 

All country-wide predictions were carried out in the inference stage on AWS EC2 instances 
optimized for GPU compute. Specifically, the p2.xlarge and p2.8xlarge instance types were used 
and were ran these as Spot Instances (as opposed to On-Demand) to reduce AWS costs. Typically, 
2-3 instances were ran at a time to increase throughput. On each instance, large batches of 
images were processed one at a time. Each country was generally divided up into about 7-10 
batches (according to the X-indices of tiles) as it was not feasible to transfer an entire country’s 
worth of tiles from S3 to the EC2 instance. While computing probability scores, the prediction 
script periodically uploaded tile prediction scores (as a JSON file) to S3 while processing (around 
every 5,000 images). This ensured that the prediction was fault tolerant -- scores were not lost 
when the instance shut down unexpectedly. 
 
3. ML-derived overlay 
With the probability of a tower computed for each tile, the next step was to compile these results 
into a GeoJSON and provide this as a map overlay that the mappers could use on top of their 
satellite imagery. Therefore, a hard threshold for the probability score was selected: any image 

https://github.com/tensorflow/tensorboard
https://github.com/hyperopt/hyperopt
https://aws.amazon.com/
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with a score at or above this limit would be designated as having a HV tower by the model and 
incorporated into the GeoJSON overlay for our Data Team to use during mapping. To choose this 
threshold, Receiver Operator Characteristic (ROC) curve was computed and the distributions of 
scores for positive and negative examples was plotted (i.e., containing or not containing HV 
towers). These tiles were included in a GeoJSON map that simply marked a square outlining every 
positive prediction. The threshold was set at 0.97 in an attempt to balance true and false 
positives. As in the previous inference step, these GeoJSON overlays were computed in batches 
according to the X-indices of tiles. Finally, all overlays were concatenated into one file 
using geojson-merge and uploaded to S3 for the mapping team to download and use 
within JOSM (Java OpenStreetMap; an OSM editor).  
 
4. Tracing 
Using the GeoJSON overlay, the data-team began to trace all HV infrastructure. They first created 
a “task” for each country using a tasking manager. This tool breaks a geospatial area into a grid 
of small squares, where any person can only work on mapping a single small region at a time (to 
prevent collisions; Figure 8). 

Figure 8. 

Example of tasking manager in Zambia. Each yellow square represents a small region that was mapped 

and each blue square shows a locked region where mapping in progress by a single person. Squares 

without any color still require attention. 

Each person selected and “locked” a square before mapping all HV features that lie within this 
small zone using JSOM. Each square was approximately 1,100 km2, which often contained many 
predicted towers distributed throughout the area (Figure 9). 

https://github.com/mapbox/geojson-merge
https://josm.openstreetmap.de/
https://github.com/hotosm/tasking-manager
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Figure 9. Example of a single locked tile from the task manager. Each dot represents a positive prediction 

by the model ready to be manually reviewed. 

Nearly all of the manual tracing involved tracing from tower to tower. Again, the ML-derived 
overlay acted as a guide -- HV towers that were correctly identified showed up as strings of small 
boxes that are visible against the unordered background of false positives. The Data Team 
updated the HV infrastructure within their mapping software each morning to make sure they 
always edited the most up-to-date version. Tracing primarily involved adding sections of the HV 
network that were completely missing or adding missing towers along an existing but under-
mapped HV line. In some cases, the Data Team fixed tower locations that were 50-100 meters 
misplaced from the correct location. The data team also did not edit the operating voltage tag 
for the HV lines. If the voltage existed prior to the project start, they left it in place; otherwise, it 
was not added. 

Because it was difficult to keep track of which areas they had reviewed, the Data Team 
customized the To-Fix plugin available in JOSM. Rather than manually zoom and pan between 
each predicted tower, this allowed them to load in the ML-derived prediction map and iterate 
over individual predictions one at a time with the click of a button. This helped organize the 
review process and increased the speed of each mapper. The Data Team was tasked with tracing 
tower and power substation they could find (even if it was not identified in the ML portion of the 
pipeline). The GeoJSON overlay acted as a guide so that the mappers could efficiently hook into 
a section of the network and begin mapping, but it did not dictate all their mapping efforts. 

https://wiki.openstreetmap.org/wiki/JOSM/Plugins/To-fix
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The Data Team went back and validated all edits once their initial mapping pass was complete. 
The goal was to double check for any missing connections and verify the accuracy of all added 
features (e.g., HV towers and substations). As edits were made within OSM itself, all additions 
were immediately available for anyone to view and access. Then final statistics on the mapping 
rate (in of km2 per hour and towers per hour) during the generation of training data and during 
country-wide prediction (i.e., before and after the ML overlay was available) were computed. 
These two data points allowed to calculate the relative speed of pure manual mapping and ML-
assisted mapping. 
 

RESULTS 
 
Optimization: model training 

When training deep learning models, there are many small choices to make regarding the 
architecture and training procedure to follow. Typically, a good strategy is to test a wide range of 
hyperparameters and select the model with the highest performance. The full list of possible 
hyperparameters tested is available in config.py, but some of the most important examples 
include the optimization scheme, learning rate, and non-linear activation function. To automate 
testing process, the Hyperopt library was used and to track each model's performance in 
Tensorflow's Tensorboard -- a tool for visualizing model performance during training (Figure 10). 
About 150 different iterations of the Xception model were tested during the early stage of this 
project and selected the highest performing one.   

 

Figure 10. Validation loss and accuracy during training. Each line represents the training of one model 

over time viewed in Tensorboard. Left: loss on the validation data (using binary cross-entropy on the 

probability output) where lower is better. Right: accuracy on the validation data as proportion of images 

correctly classified. Here, higher is better. 

Optimization: signal detection threshold 

The ML model took individual images as input and provided output for each in the form of a 
probability between zero and one. This probability score represents the model's confidence that 
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a HV tower was present. Therefore, this problem was framed with a perspective borrowed from 
signal detection theory. This field provides theoretical guidance on how to select a threshold 
cutoff when deciding which images are said to contain towers and which aren’t. Here, this 
threshold defines which tiles should be included in the map overlay provided to the Data Team. 
ROC analysis from signal detection theory was used to inform this choice of threshold; a ROC 
curve gives insight into how our the true positive-rate (TPR) and false-positive rate (FPR) change 
for different choices of the threshold. The TPR gives the proportion of tiles truly containing a HV 
tower that were selected by the ML model. The FPR is the portion of model selections that were 
incorrect (i.e., probability of a false alarm). An area under the curve (AUC) of 0.96 was obtained 
in held out data from the three train regions with a threshold=0.31 (Figure 11). The probability 
score distributions for the held-out data in the training phase show good separation between 
true positive and true negatives (Figure 12). 

Figures 11 and 12 indicated very high performance, but it is necessary to note that this is specific 
to data from the small training data set (covering about 1.05% of the combined total area of the 
three countries). When running this model at the country-wide scale, a substantial drop in 
performance was noted. Reason for this drop and potential ways to ameliorate the issue are 
explained in the discussion section. Briefly, it is believed that the problem lies with the fact that 
the training data was only created from one small region in each country.  

 

Figure 11. ROC curve for model’s performance on detecting HV towers. Setting the threshold of 0.31 

gave optimal corner distance. 
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Figure 12. Assigned probability distributions for images containing (red) and not containing (blue) HV 

towers. The model’s assigned probability scores (x-axis) are displayed as an estimated probability density 

function (with probability on the y-axis). Note, that the model can properly separate the majority of 

images in this validation data from the training set. 

 

Country-wide predictions 

After selecting an optimal model and decision threshold, country-wide imagery sets were 
processed across Pakistan, Nigeria, and Zambia (Figures 13-15). It is necessary to note that the 
thin snaking lines in the below plots indicate where HV lines exist. The same model was used 
across all three countries, and the model performed much better in regions of each country 
where the original training data was collected (likely because of the similar terrain). Outside of 
these areas, the model gave more false positives (appearing as large dark blobs).   
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Figure 13. Country-wide prediction map in Pakistan. Black dots correspond to locations where the model 

predicts a HV tower was present. In the mountainous desert region of Pakistan, the model performed 

relatively well. In the Eastern agricultural region, the model predicted many more false positives as there 

were no any training data obtained from that region.  
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Figure 14. Country-wide prediction map in Nigeria. The model made many false positives along the 

central savannah region of Nigeria. Here, the landscape is mostly comprised of exposed rock outcroppings 

and sharp hills. These rugged areas have many long cracks and grey-colored rocks that likely contributed 

to the false positives here. The training data came from a very different terrain -- the tropical rain forest 

region in the Southeast. 
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Figure 15. Country-wide prediction map in Zambia. The model performed relatively well in Zambia. In 

the Southern region, however, the imagery quality was relatively poor (i.e., somewhat discolored and 

blurry) compared to the rest of the country causing more false positive predictions. This is often indicated 

by sharp boundaries in prediction density. The effects of wildfires are also visible in some regions where 

the model performed poorly. This likely occurred because the training data did not sample from these 

burned regions. 

 
 
 
Mapping output and speed 

This project substantially expanded the amount of mapped HV infrastructure (Figure 16). Edits 
include both additions and major corrections though most edits were additions. 

The Data Team was approximately 33.4x faster per km2 with the ML-derived overlay for Pakistan, 
Nigeria, and Zambia (Figure 17). The total time spent on mapping and validating each country 
using these ML predictions is in Table 1. 

Figures 18-20 show before and after maps of every country. Click on each to interact. 
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Figure 16. HV infrastructure features in OSM. Left: Total length of HV line after this project. Middle: Total 

number of HV towers after this project. Right: Total number of substations after this project. The bars in 

all plot are split into the amount of previously existing HV infrastructure (dark blue) and infrastructure 

added or edited during this project (light blue). In all cases, most edits were additions. 
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Figure 17. Mapping rate with and without ML-assist. On average, the km2 per hour mapping speed 

increased 33.4 times, mapping speed of substations per hour increased 15.9 times, and towers mapping 

speed per hour increased 9.7 times. Note that these figures exclude hours spent validating (i.e., double-

checking) edits. This ensured a fair comparison as no double-checking was carried out during the pre-ML 

mapping work to generate the training data. 

Table 1. Total person-hours spent mapping at country-wide scale. 

COUNTRY HOURS MAPPING HOURS VALIDATING 

Pakistan 364.13 181.09 

Nigeria 243.12 74.47 

Zambia 167.17 29.45 
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Interactive demonstrations 
 

 

Figure 18. Before and after mapping in Pakistan. High-voltage infrastructure before (yellow) and after 

(green) this project was complete. Click http://devseed.com/ml-grid-docs/results/mapping-output-and-

speed/ for interactive demo and zoom in to see individual towers (dots) and substations. 

 

http://devseed.com/ml-grid-docs/results/mapping-output-and-speed/
http://devseed.com/ml-grid-docs/results/mapping-output-and-speed/
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Figure 19. Before and after mapping in Nigeria. High-voltage infrastructure before (yellow) and after 

(green) this project was complete. Click http://devseed.com/ml-grid-docs/results/mapping-output-and-

speed/ for interactive demo and zoom in to see individual towers (dots) and substations. 

 

http://devseed.com/ml-grid-docs/results/mapping-output-and-speed/
http://devseed.com/ml-grid-docs/results/mapping-output-and-speed/
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Figure 20. Before and after mapping in Zambia. High-voltage infrastructure before (yellow) and after 

(green) this project was complete. Click http://devseed.com/ml-grid-docs/results/mapping-output-and-

speed/ for interactive demo and zoom in to see individual towers (dots) and substations. 

 
Compute costs 

All computation and data manipulation was carried out on Amazon Web Services (AWS). The 
AWS Elastic Compute Cloud (EC2) was used for the model training and prediction. Primarily, 

the p2.xlarge instances were used, which contain GPUs suitable for deep learning. To download 

the satellite imagery from the Digital Globe Maps API, m5.xlarge and c5.9xlarge instances were 
used, as these could handle large numbers of threads making the necessary HTTP requests. To 
store the data, AWS Simple Storage Service (S3) was used. Note that the below costs do not 
include any associated imagery costs, as those are difficult to estimate because of the unique 
contracts each organization makes with satellite imagery providers. The total compute cost was 
$1,137.85 or about $0.42 per 1,000 km2. A more-detailed compute cost analysis is available in 
Table 2. 

Table 2. Costs for obtaining, storing, and processing satellite imagery 

http://devseed.com/ml-grid-docs/results/mapping-output-and-speed/
http://devseed.com/ml-grid-docs/results/mapping-output-and-speed/
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SERVICE COST 

AWS EC2: downloading imagery $59.38 

AWS EC2: training and predicting $392.14 

AWS S3: storing and accessing imagery $686.33 

Total $1137.85 
 
 

DISCUSSION 

A pipeline was created to boost human mapping speed by 33x when tracing high-voltage 
infrastructure. At a high level, machine learning was used to find satellite imagery tiles that were 
most likely to contain HV towers and then pass this information to Data Team – a group of 
professional mappers to trace the HV infrastructure. This strategy was tested in three countries: 
Pakistan, Nigeria, and Zambia comprised of a total land area of approximately 2.7 million km2. All 
edits were made in OpenStreetMap, which is openly available. Individual changes to OSM are 
also available in the Github repo. 

Throughout the course of this project, it was confirmed that neither humans nor an automated 
system alone are currently a feasible approach for mapping HV infrastructure. On one hand, 
professional mappers are very accurate and know when to ask for confirmation on difficult 
imagery. However, the time required to manually review an entire country is tremendous. We 
estimated it would have taken our Data Team about 6 months of full time effort to complete 
Pakistan alone. On the other hand, ML algorithms can operate with very high throughput and 
very little oversight once trained. Pakistan required only several days of computation time and a 
few hours of human effort to monitor the scripts. Nevertheless, the ML results indicated that it 
would be practically impossible to train an algorithm as accurate as a human. Combining them in 
an Intelligence Augmentation (IA) approach leveraged the strengths of both humans and 
machines. 

The IA approach is also prudent in comparison to a pure AI strategy focused on completely 
replacing humans. By keeping a human in the loop, it can be made sure that all ML predictions 
are validated by a professional mapper before the additions are incorporated into OSM. The OSM 
community is (rightly) skeptical of any method that add edits without human verification as this 
strategy has led to issues in the past. Therefore, building a workflow utilizing the strengths of 
both is likely the optimal way forward. Future work should focus on improving the machine 
learning predictions and better incorporating those predictions into mapping editors (perhaps as 
plugins for standard map editors) so they are widely available to human mappers. 

Future directions 

The rest of this discussion section is focused on improvements for future iterations of this 
mapping pipeline. 

https://github.com/developmentseed/ml-hv-grid-pub
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1. Improving how we handle big data 
1. Efficiently downloading and storing large imagery datasets 
2. Matching download and prediction speeds on the fly 

2. Improving the machine learning predictions 
1. Detecting HV substations 
2. Improving HV tower detection 
3. Using additional forms of imagery (like SAR) 

3. Integrating ML predictions into human mapping workflows more effectively 

 
1. Big data 
Downloading large datasets 

Perhaps the biggest challenge in this project was handling the tens of millions of images for each 
country. HV towers only become recognizable at about zoom 18 imagery (~0.5 meter/pixel 
resolution), which is a relatively high spatial resolution for commercially available satellite 
imagery. The cost associated with this high spatial resolution was associated with the need to 
handle a very large volume of tiles. Just the act of downloading the imagery from the Digital 
Globe Maps API was extremely computationally intensive. Tens of thousands of networking 
coroutines were run, essentially lightweight threads each downloading a single image at a time, 
in parallel. This was the only method allowing to obtain the country-wide image sets in a 
reasonable amount of time. It was also required to keep track of which files had been 
downloaded to avoid wasting time and resources; at nearly a hundred million image tiles, 
tracking this process is no longer trivial. Standard operating systems would throw an error if one 
would simply try to list or delete a folder with this many files. 

For the next iteration, AWS's Simple Queue Service (SQS) will likely be used to tabulate all tiles 
that need downloading. Each entry will contain tile indices, which the downloading script can pull 
from asynchronously. Then, each entry in the queue is only removed if the downloading process 
sends back confirmation that it worked correctly. This should provide a fault tolerant and more 
efficient solution that could also scale if there is a need to process more countries. It will also 
allow for easier downloading of a portion of the total images. In many cases, the ML algorithm 
does not need to predict the entire country's images for the strings of HV towers to become 
visible to a human in an ML-generated map overlay. In the first iteration, the download script 
randomly skipped over images with a probability dependent on the desired download proportion 
(i.e., if only half of a country's images were needed, the skip probability would have been set to 
0.5). Using SQS, allows randomly shuffle the queue once and then download the desired number 
of images directly instead of wasting computation in this skip procedure. 

Optimizing download and prediction speed 

It was also decided to download all imagery directly to AWS S3 for storage. This choice was useful 
in that there never was a need to request any imagery twice from the Digital Globe Maps API, 
and a full copy of all the data intended to be processed was available. It was also believed that it 

https://platform.digitalglobe.com/maps-api/
https://platform.digitalglobe.com/maps-api/
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was possible to rapidly transfer images from S3 to EC2 instances for the inference stage, which 
was dependent on GPU instances that are charged by the length of time that they're reserved. 

However, the storing and accessing data on S3 was both costly and slow. There are set financial 
costs associated with the raw volume of stored data as well as costs for each file uploaded or 
downloaded to and from S3. But accessing stored data was more expensive than expected simply 
because of the sheer number of files that were required to process. Additionally, the speed at 
which the stored data could be accessed was much slower than expected. This likely occurred for 
two reasons: first, since S3 accesses files using a key-based system, any request for a subset of 
imagery (using asterisk wild cards for example) required the AWS servers to iterate over all keys 
to find the relevant subset; again, because of the large volume of files, this was surprisingly slow 
— in some cases, an S3 copy request could take 1-2 hours before the download even started. 
Second, the effective download speed (in Mbps) was also quite slow. It became evident, that 
there is a fixed overhead computational cost to initiating the download of a single file. As a 
practical example, this means that downloading one-thousand 1kb files is much slower than 
downloading one 1 Mb file. Transferring data from S3 to EC2 instances (for inference) was about 
100 times slower than AWS is capable of, had the same data been stored as a single file. 

Future efforts should attempt to avoid S3 and focus on methods of downloading imagery directly 
to EC2 instances immediately before prediction. The challenge here is to match the speed that 
images are downloaded with the speed of prediction. Currently, the download step is 2-5x slower 
depending on the GPU instance used for prediction. Download speed could be increased by 
finding a better method of requesting images (currently done via HTTP). It may also be possible 
to somehow construct super-images each made up of 25 or 100 individual tiles (in 5x5 or 10x10 
squares, respectively) prior to downloading them. This would address some of those constant 
overhead and possibly reduce the effective per-image download time. Even something as simple 
as combining large groups of images into single zip files might help reduce the slowdowns we 
experienced. 
 
 

2. Improving ML output 
Detecting substations 

Substations are a part of the transmission and distribution system. Their purpose is to transform 
voltage from low to high prior to electric energy transmission and vice versa to supply transmitted 
electricity to consumers. The location of these substations is useful when mapping the HV 
network since most HV towers end or begin at these points. The Data Team estimated that they 
would be 15-20% faster with substation locations. It is also valuable information to developers 
focused on renewable energy projects. The location of substation is vital when planning potential 
connection points for the next generation of electricity-producing infrastructure. 

For these reasons, autonomous detection of substations is an important goal for future HV 
mapping work. Substations were mapped as part of this project, but the ML model was not built 
to explicitly detect them. The Data Team identified substations while tracing HV lines to their end 
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points, since they generally terminate at a substation. Building an ML model explicitly capable of 
detecting substations would accomplish two major goals. First, it would facilitate the mapping 
process as these substations represent important hubs within the grid's network. Knowing their 
location is especially useful in crowded urban environments or where HV lines run underground 
near residential areas. Second, substation detection would provide a much-needed tool for 
integrating renewable energy projects into the larger electricity network. The data acquired while 
mapping around thousand substations across the three full countries, it will be possible to train 
a ML model capable of automatically detecting substations. 

Better detection of HV towers 

In the beginning of this project, there was no any validated training data. The Data Team was 
tasked with manually reviewing three relatively small areas — one region in each country — and 
ensuring that every meter of ground was checked for the presence of a HV tower. This was a slow 
task (and exactly the problem to be solved), but necessary to generate a training set of imagery 
to build the machine learning model. These initial training datasets covered about 1.05% of the 
total area that would eventually be processed when moving to the country-wide scale. 

Having the complete high-voltage infrastructure mapped in three full countries, and a vastly 
larger set of data would allow to train the next iteration of the model. Future iterations should 
start by adding training data from where the model performed most poorly. For example, the 
agricultural region of Pakistan is a great place to start as the gridded farmland regularly confused 
the ML model. In this iteration of the project, the only training data in Pakistan came from the 
desert mountainous region in the Western half of the country. This is likely the reason that the 
model generalized poorly to the more lush farmland along the Eastern border. The model was 
also confused in certain regions where there were issues with DG's imagery including shading or 
blurriness. Again, having more data with these issues present will provide training data that 
better represents the true data distribution and ameliorate the problem. In the future, a simple 
strategy might be to build training imagery from numerous small regions, representing most or 
all of each country's different terrain (as opposed to a few large regions as done initially). This 
will result in training data sets that better capture the full distribution of possible images the 
model might encounter when processing across an entire country. 

SAR imagery 

In this project optical (i.e., RGB) imagery was used to make all predictions. The initial pilot phase 
of this project, however, involved synthetic aperture radar (SAR) imagery – an active sensing 
technique that emits and receives microwave energy. Man-made structures like HV towers 
strongly reflect SAR imagery making them visible even in low-resolution imagery. This imaging 
technique is also advantageous in that it is not affected by clouds or shadows. However, SAR 
suffers in mountainous and forested regions because the technique measures gradients in 
surface height. While SAR imagery is not expected to replace the current optical approach, it may 
act as a power tool to validate portions of the network with high confidence. 
 

3. Improving mapping workflow 

http://devseed.com/ml-grid-detection/
http://devseed.com/ml-grid-detection/
https://en.wikipedia.org/wiki/Synthetic-aperture_radar
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Machine learning aside, there is room for improvement on the human component of the 
mapping efforts carried out by the Data Team. The concept of using machine learning to guide 
mapping was new and untested for the professional mappers and the ML team, so ideas were 
collected to streamline the process throughout this project. The Data Team found that navigating 
through the ML model's predictions was tedious — initially they were repeatedly zooming in to 
map a few towers and then zooming out to reestablish a high-level view of the predictions. This 
constant reorientation of the view also made it difficult to keep track of which areas had been 
reviewed. As discussed in the Methodology Section, the Data Team built its own To-Fix plugin 
within JOSM so they could click through the model's predictions with a single button. In the 
future, the potential to "jump" several towers at a time when mapping can be explored if only 
the HV lines are of interest. This could reduce mapping efforts up to 30% in areas where multiple 
towers in a row are visible. 

Another limitation was that the ML predictions were not available to view in the tasking manager 
– the piece of software used to organize a group of mappers working in the same geospatial area. 
Initially, there was no way to view the ML predictions in this overlay, but the team could create 
the ability to add the ML overlay just like other map layers. 

The Data Team also noted that image quality varied across entire countries. In some cases, it was 
difficult to accurately trace HV infrastructure due to blurry or otherwise poor-quality imagery. 
Future efforts should explore other sources of satellite imagery that are higher quality and up to 
date. An engineering consult who is familiar with typical HV network construction might also be 
advantageous. Someone with domain knowledge should be able to rule out ambiguous features 
in the imagery; examples include connections that appear to involve three HV towers, changes 
in the size (and possibly operating voltage) of HV towers, or areas where the HV lines appeared 
to bifurcate. Areas where many different HV lines came together (often near substations in cities) 
were also difficult to delineate as were towers in complicated urban environments. These special 
cases were relatively rare, but they are difficult to map from overhead imagery at zoom 18 
resolution. 
 


